Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy

Thomas Rothe
Michael Schmitz
Alwin Kienle
Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy

Thomas Rothe, Michael Schmitz, and Alwin Kienle
Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr. 12, 89081 Ulm, Germany

Abstract. A darkfield scattering microscope has been constructed that enables both angular and spectrally resolved measurements of elastic scattering patterns. The comparison of the angular and spectral resolution modes is shown in detail. Angular patterns of the backscattered light by homogeneous polystyrene spheres were measured at 57 wavelengths and the diameters of the single spheres were determined by using Mie theory at each wavelength. The mean diameter values were estimated in the angular mode with a relative standard deviation of 0.25% or less. Spectral scattering patterns of the same beads were investigated and the diameters were determined and compared with the results of the angular measurements. The estimated diameter values in the angular and the spectral mode were in an excellent agreement with deviations of less than 0.20%.

Keywords: microscopy; backscattering; Mie theory; Fourier optics; angle-resolved scattering; light scattering spectroscopy.

1 Introduction

Analyzing light scattering patterns of biological samples is a field of active research with growing interest. The observation of the scattering signatures enables the characterization of structure, size, and refractive index of a sample. For the examination of single cells, a microscopic setup is crucial. Light scattering microscopy allows one to investigate particles not only spectrally resolved,3,4 but also angular resolved.3,4 In the literature, several other methods are shown to acquire the scattering signatures in spectral,5 angular,6,7 spatial,8 or temporal resolution modes,9 for instance. Multimodality microscopic systems combine angular and spectrally resolved measurements.10,11 Scattering microscopy is a label-free technique which is essential for investigating biological cells.12 The microscopy setups offer various opportunities of sample illumination. Therefore, miscellaneous setups have been reported with brightfield illumination,10 darkfield illumination,11 and confocal illumination.13,14

A novel light scattering microscope setup with a combination of spectral and angular resolution modes is introduced in this publication. Cottrell et al.10 and Smith and Berger11 published similar setups. In contrast to those, the microscope shown here has several crucial advantages. The presented microscope has a unidirectional illumination, similar to angular resolved low coherence interferometry systems,7,15 instead of a rotationally symmetric epi- or transillumination, respectively. Hence, the angular distribution of the scattered light is not integrated over the azimuthal angle and no information is lost. In addition, the orientation of the sample can be rotated with respect to the direction of illumination. These two facts are important for the characterization of nonspherical particles that scatter into a preferred direction, such as spheroidal or cylindrical samples for instance.15,16 Furthermore, the setup shown here is a microscope with a reflected darkfield illumination, which is advantageous for the investigation of thicker samples or in situ measurements.7,11 Considering Mie theory, the backward scattered light contains more information than the forward scattered light in both angular and spectral resolution mode.10,11 Besides, the system presented in this contribution is based merely on elastic scattering, which is in contrast to the setup of Smith and Berger that combines Raman scattering and elastic scattering.11

For the understanding of the interaction of light with biological cells or tissue, the inner structures of cells can be assessed as a first approximation as spheres,12,13,15,16 cylinders,21 or a mixture of spheres and cylinders.22 The scattering of light by spheres23 and by cylinders24 can be described analytically. Prior to investigating biological cells and tissues, the scattering microscopy setup has to be evaluated by reference samples. The scattering microscope shown here was successfully evaluated in the spectral mode by comparison with a collimated transmission setup by Schmitz et al.25 In this contribution, the angular resolution mode is compared with the spectral resolution mode. For validation, single polystyrene beads are measured angular and spectrally resolved and the sphere diameters are determined. The conformity of angular and spectral resolution mode is verified by comparing the diameter values for each single measurement. Both methods are in a very good agreement.

2 System Design

The scattering microscopy setup is based on an inverted microscope with a reflected darkfield illumination. Thus, only light that is scattered by the sample is collected in a certain angular range that depends on the objective and the effective numerical aperture defined by the aperture stop in F' (see Fig. 1). In the following, the angles θ and φ are defined relative to the z-axis, which equals the optical axis of the objective.25 The positive z-direction is the direction of the detection path. The x- and y-directions are defined by the motorized microscopy stage.
In the angular mode, a supercontinuum laser source (SuperK Blue, NKT Photonics A/S, Birkerød, Denmark) in combination with an acousto-optic tunable filter (AOTF-PCAOM Vis, Cryystal Technology, LLC, Palo Alto, California) illuminates the sample placed in the object plane O. The back focal plane F of the objective is focused onto a CCD camera (SIS p1010, Theta Systems, Germany) detecting the scattered light. The angular mode, a long distance objective (LD EC Epiplan-Neofluar 50x/0.55 HD DIC M27 air, Carl Zeiss AG, Oberkochen, Germany) detects the scattered light in an angular range from $\Theta = 89$ deg to $\Theta = 153$ deg with an effective numerical aperture $N_{\text{eff}} = 0.53$ ($\theta_{\text{max}} = 32$ deg). The scattering angle Θ is the angle between the incident and the scattered light. The back focal plane F of the objective represents the angular distribution of the scattered light. Via a lens system it is focused onto a CCD camera (SIS p1010, Theta Systems GmbH, Gröbenzell, Germany) placed in the Fourier plane F''. Hence, each pixel on the CCD chip indicates a certain scattering angle with a resolution of about 0.2 deg/pixel close to the optical axis. In the Fourier plane, the von Bieren condition describes the spatial frequency, i.e., the pixel position, to be proportional to $\sin(\Theta)$, meaning the pixel position is proportional to the sine of the scattering angle Θ.

For spectrally resolved measurements, the sample is illuminated by a broadband light source provided by the supercontinuum laser. The spectral mode (S) is illustrated in Fig. 1 with dashed yellow lines. An objective with a long working distance (Epiplan 5x/0.16, Thorlabs, Newton, New Jersey) and the collimated output beam of the fiber irradiates the sample. By tuning the ultrasonic frequency and power the optical wavelength can be adjusted continuously between 420 and 700 nm. In Fig. 1, the angular mode (A) is represented by dashed red lines. A part of the backscattered light by the sample is collected by the objective. In the angular mode path (A; dashed red lines), the back focal plane is focused onto a CCD camera.

Fig. 1 Experimental setup for angular and spectrally resolved scattering microscopy. The scattered light is represented by solid orange lines. In the spectral mode path (S; dashed yellow lines), the scattered light is focused onto a fiber. In the angular mode path (A; dashed red lines), the back focal plane is focused onto a CCD camera.
Theoretical Backscattering Model Based on Mie Theory

The theoretical calculations of the angular and spectral dependencies of light scattering in this study are based on Mie theory. It provides an exact analytical solution to Maxwell’s equations describing the scattering of an electromagnetic wave by a homogeneous, spherical particle. With known input parameters, Mie calculations enable the determination of the phase function $p(\Theta)$ and the scattering cross-section C_γ. These input parameters are the sphere diameter D, the wavelength λ in vacuo, and the refractive indices of the scatterer n_s and of the surrounding medium n_M. The model described in Schmitz et al. is valid for spectrally resolved measurements but only for air as medium surrounding the scatterer. Thus, the model was extended and generalized for calculations of light scattering by particles in an arbitrary medium with known dispersion.

The theoretical spectra and angular distributions are calculated by means of the Stokes vectors of the incident \vec{S}_i and the scattered light \vec{S}_s, respectively. The Stokes-Mueller calculus for the scattering microscopy setup is

$$
\begin{pmatrix}
S_{s,0} \\
S_{s,1} \\
S_{s,2} \\
S_{s,3}
\end{pmatrix} = T_{GA} T_{MG} M_S R T_{GM} T_{AG} \begin{pmatrix}
S_{i,0} \\
S_{i,1} \\
S_{i,2} \\
S_{i,3}
\end{pmatrix},
$$

where each matrix (M_S, R, T) depends on the refractive indices of the scatterer and the medium. Therefore, in consideration of dispersion these Mueller matrices are dependent on the wavelength. In the following, the matrices in Eq. (1) are explained. The scattering matrix M_S for a single sphere is calculated by Mie theory. The scattering matrix elements depend on the scattering angle Θ, the diameter of the sphere D, and the wavelength λ and are calculated as described in Bohren and Huffman. All scattering angles Θ that are detectable by the presented setup can be determined from the normalized wave vectors of the incident \vec{k}_i and the scattered light \vec{k}_s.

$$
\Theta = \arccos(\vec{k}_i \cdot \vec{k}_s)
$$

with

$$
\vec{k}_i = \begin{pmatrix}
\sin \Theta_i \\
\cos \Theta_i \\
\sin \psi_i \\
\cos \psi_i
\end{pmatrix}
$$

and

$$
\vec{k}_s = \begin{pmatrix}
\sin \Theta_s \\
\cos \Theta_s \\
\sin \psi_s \\
\cos \psi_s
\end{pmatrix},
$$

where Θ_s is the polar angle and ψ_s is the azimuthal angle of the scattering direction in the medium. The incident polar angle in the medium is determined using Snell’s law with $\Theta_i = \arcsin(n_A/n_M \times \sin \Theta_t)$, where $n_A = 1$ is the refractive index of air and n_M is the refractive index of the surrounding medium considering dispersion (refer to Sec. 4.2). The incident azimuthal angle in the medium ψ_i equals the azimuthal angle in air ψ_t. In the spectral mode, the value of ψ_i has no influence on the spectra. Nevertheless, in the angular mode ψ_i rotates the angular distribution of the scattered light and cannot be neglected. The azimuthal angle of the scattering ϕ_s ($\phi_s = \psi$) is defined in a range from 0 deg to 360 deg and is not affected by refraction. Due to the numerical aperture of the objective, the polar angle of the scattered light in the medium $\Theta_s = \arcsin(n_A/n_M \times \sin \Theta)$ is limited to the maximum angle of acceptance

$$
\Theta_{max,M} = \arcsin\left(\frac{n_A}{n_M} \times \sin \Theta_{max}\right)
$$

with $\Theta_{max} = \arcsin(NA_{air})$.

These dependencies on the refractive index show the impact of dispersion on the detectable scattering angle Θ. Thus, the range of the detectable scattering angle varies with the wavelength.

The rotation matrix R considers the rotation of the polarization state relative to the plane of scattering spanned by the vectors \vec{k}_i and \vec{k}_s. The angle between the plane of scattering and the plane of incidence $\xi = \eta(\Theta_s, \psi_s)$ depends on the angles of the scattering direction in the medium. Hence, the rotation matrix R varies for each wavelength. The plane of incidence is spanned by the incident wave vector \vec{k}_i and the z-axis.

The plane of scattering is rotated about the scattered wave vector for $\phi_s = \psi_i$ and $\phi_s = \psi_i - 180$ deg both planes are identical.

As explained in Sec. 2, the setup is an inverted microscope with a reflected darkfield illumination where the samples are placed upon a coverslip. For that reason, the transmission through the coverslip of the illumination and the light scattered by the sample have to be considered. Based on Fresnel’s formulas the transmission matrices T have to be calculated for each interface. Four matrices T are required, one for each interface: for the illumination the transmission matrices from air to the coverslip (T_{AG}, air to glass) and from the coverslip to the medium (T_{GM}, glass to medium) and for the light scattering the transmission back from the medium to the coverslip (T_{MG}) and from the coverslip to air (T_{GA}) have to be examined. With air as the medium surrounding the scatterer both the matrices T_{AG} and T_{GM} and the matrices T_{MG} and T_{GA} are equal. The transmission matrices are also wavelength-dependent due to dispersion. Multiple reflections between both interfaces can be neglected due to low intensity.

The detectors for both angular and spectrally resolved measurements, i.e., the CCD camera and the CCD spectrometer, are not sensitive to polarization. Thus, to determine the intensity of the scattered light, only the first Stokes parameter $S_{i,0}$ of the scattered Stokes vector \vec{S}_s is of importance. The incident angles Θ_i and ψ_i are kept constant for the entire experiment. In the angular mode, the incident light is linearly polarized with $\vec{S}_i = (1 -1 0 0)^T$ since the AOTF’s output is linearly polarized. The theoretical angular distribution of the scattered light is estimated for the detectable angular range by applying a single wavelength λ and the corresponding incident angles

$$
I_{T,\lambda}(\Theta, \psi, D) = S_{i,0}(\Theta, \psi, \lambda, D).
$$

The intensity $I_{T,\lambda}(u, v, D)$ for each pixel on the CCD chip with the Cartesian coordinates (u, v) is obtained via the von Bieren condition, by transforming Eq. (5) with

$$
u = \sin \Theta \cos \psi \quad \text{and} \quad v = \sin \Theta \sin \psi.
$$

The incident light for spectral measurements is unpolarized as the supercontinuum laser provides an unpolarized output. Thus, its Stokes vector is $\vec{S}_i = (1 0 0 0)^T$. The scattered
light from all the collected angles is integrated and detected spectrally resolved. To take into account the spectral resolution of the spectrometer, the spectrum is convolved with a Gaussian function \(g(\lambda) \) with a full width half maximum (FWHM) of \(\Delta \lambda = 3.08 \text{ nm} \), measured at the wavelength \(\lambda = 632.8 \text{ nm} \). By applying \(\phi_i \) and \(\theta_i \) depending on the dispersion, the theoretical scattering spectrum \(I_T(\lambda, D) \) of a single sphere with diameter \(D \) measured by the scattering microscope is

\[
I_T(\lambda, D) = g(\lambda) * \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\theta_{\text{max}}} S_{\lambda,0}(\theta, \phi, \lambda, D) r^2 \sin \theta d\theta d\phi.
\]

(7)

with the distance to the detector \(r \).

4 Materials and Methods

4.1 Sample Preparation and Measurement

Suspensions of polystyrene beads with a nominal Gaussian particle size distribution are investigated to measure Mie oscillations in both angular and spectral mode. Two different stock suspensions are taken as samples referred to as PS4-2 (PS/Q-F-L1086, microparticles, Berlin, Germany) and PS2-8 (PS-F-L2095, microparticles, Berlin, Germany). These suspensions have a nominal mean diameter \(\nu_{\text{PS4-2}} = 4.21 \text{ μm} \) with a nominal standard deviation \(\sigma_{\text{PS4-2}} = 0.07 \text{ μm} \), and \(\nu_{\text{PS2-8}} = 2.82 \text{ μm} \) with \(\sigma_{\text{PS2-8}} = 0.04 \text{ μm} \), respectively. The stock suspensions are homogenized in an ultrasonic bath for 30 min. Afterwards, the stock suspensions are diluted with distilled water to create working suspensions with a volume concentration \(f_v = 5 \times 10^{-6} \). Thereby, it is made sure that the distances between the single particles are large enough to prevent multiple scattering. The working suspensions are given into the ultrasonic bath once more. Subsequently, a droplet of approximately 50 μl of each working suspension is placed within a sample chamber separately. The sample chamber is composed of a sandwich from a microscope slide and a coverslip. By applying the motorized stage with the coverslip downwards, the sample chamber is placed onto the motorized microscope stage separately. The sample chamber is composed of a sand-
is normalized onto the theoretical data. Both experiment and the correlation function $C_{620}(D)$ are plotted versus the angles. (e) Correlation function $C_{620}(D)$ with the maximum at $D_{620} = 4.125 \mu m$.

$$I_E(\lambda) = \frac{I_E(\lambda) - I_D(\lambda)}{I_R(\lambda)}$$ \hspace{2cm} (10)

and the correlation $C(D)$ between theoretical and experimental scattering spectrum is

$$C(D) = \frac{\text{Cov}[I_F(\lambda, D), I_E(\lambda)]}{\sqrt{\text{Var}[I_F(\lambda, D)]\sqrt{\text{Var}[I_E(\lambda)]}}}.$$ \hspace{2cm} (11)

The diameter of the theoretical spectrum with the maximum correlation $C(D)$ is termed D_{spec}.

5 Results and Discussion

Scattering patterns were measured on several single polystyrene beads from the working suspensions PS4-2 and PS2-8 in angular and spectrally resolved mode, respectively. In the following, the single particles are numbered and denoted with the number sign “#.” The angular distribution of the scattered intensity at a particular wavelength, e.g., $\lambda = 620$ nm, for one single particle PS4-2#1 is shown in Fig. 2. In the upper left of the figure [Fig. 2(a)] the measured distribution $I_{E,620}(u, v)$ is displayed as detected with the CCD camera. Utilizing the correlation algorithm (Sec. 4.2), the sphere diameter was identified to be $D_{620} = 4.125 \mu m$. The corresponding theoretical distribution $I_{T,620}(u, v, D_{620})$ is shown in Fig. 2(b). These two images represent the Fourier plane. In Fig. 2(c) and 2(d), the experimental pattern $I_{E,620}(\theta, \varphi)$ and the theoretical pattern $I_{T,620}(\theta, \varphi, D_{620})$ are plotted versus the angles θ and φ. The experimental data is normalized onto the theoretical data. Both experiment and theory are in very good agreement. The maximum of the correlation function $C_{620}(D)$ indicates the best fit, as shown in Fig. 2(e). Due to the broad peak of the correlation function, the accuracy of the diameter estimation is relatively low compared to spectrally resolved measurements. Therefore, in order to increase the accuracy, the diameter of the single particle was determined for each wavelength measured between 420 and 700 nm. The mean diameter D_{mean} is calculated by averaging these 57 estimated diameters. For PS4-2#1, the mean value is $D_{\text{mean}} = 4.1200 \mu m$ and the standard deviation σ is 0.0094 μm.

Consequently, by averaging the diameter values, a very high accuracy can be achieved.

To compare the two resolution modes of the scattering microscopy setup, the spectrum of the scattered light of exactly the same single particle was measured. The scatter spectrum $I_E(\lambda)$ of PS4-2#1 is represented by the light blue line in Fig. 3. Additionally, the best theoretical fit $I_E(\lambda, D_{\text{spec}})$ is shown as a dark blue line. Above the experimental curve is normalized onto the theoretical curve. The modulation of the characteristic Mie oscillations show some dissimilarity. Nonetheless, the spectral positions of the Mie oscillations of the experimental curve coincide with the theoretical curve very well. The diameter of PS4-2#1 determined from the spectrally resolved measurement is $D_{\text{spec}} = 4.128 \mu m$. The corresponding positions of the Mie oscillations of the experimental curve are plotted versus the angles θ and φ. The experimental data is normalized onto the theoretical data. Both experiment and theory are in very good agreement. The maximum of the correlation function $C_{620}(D)$ indicates the best fit, as shown in Fig. 2(e). Due to the broad peak of the correlation function, the accuracy of the diameter estimation is relatively low compared to spectrally resolved measurements. Therefore, in order to increase the accuracy, the diameter of the single particle was determined for each wavelength measured between 420 and 700 nm. The mean diameter D_{mean} is calculated by averaging these 57 estimated diameters. For PS4-2#1, the mean value is $D_{\text{mean}} = 4.1200 \mu m$ and the standard deviation σ is 0.0094 μm.

Consequently, by averaging the diameter values, a very high accuracy can be achieved.

To compare the two resolution modes of the scattering microscopy setup, the spectrum of the scattered light of exactly the same single particle was measured. The scatter spectrum $I_E(\lambda)$ of PS4-2#1 is represented by the light blue line in Fig. 3. Additionally, the best theoretical fit $I_E(\lambda, D_{\text{spec}})$ is shown as a dark blue line. Above the experimental curve is normalized onto the theoretical curve. The modulation of the characteristic Mie oscillations show some dissimilarity. Nonetheless, the spectral positions of the Mie oscillations of the experimental curve coincide with the theoretical curve very well. The diameter of PS4-2#1 determined from the spectrally resolved measurement is $D_{\text{spec}} = 4.128 \mu m$. The corresponding positions of the Mie oscillations of the experimental curve are plotted versus the angles θ and φ. The experimental data is normalized onto the theoretical data. Both experiment and theory are in very good agreement.
The results of the presented approach are reproducible for any single particle in the working suspension. In Fig. 4, the measured and theoretical scattering patterns for a single polystyrene bead PS2-8#5 are compared. On top of Fig. 4(a) and 4(b) the experimental \(I_E(\vartheta, \phi) \) and theoretical \(I_T(\vartheta, \phi, D_{530}) \) angular distributions for the wavelength \(\lambda = 530 \text{ nm} \) are shown with a determined sphere diameter \(D_{530} = 2.742 \mu \text{m} \). The mean diameter averaged over the wavelengths is \(D_{\text{mean}} = 2.7394 \mu \text{m} \) with a standard deviation \(\sigma = 0.0063 \mu \text{m} \). In the plot below [Fig. 4(c)], the measured spectrum of PS2-8#5 is compared against the theoretical spectrum for the best fit diameter \(D_{\text{spec}} = 2.739 \mu \text{m} \). In this case, the deviation between \(D_{\text{mean}} \) and \(D_{\text{spec}} \) is merely 0.4 nm, confirming the accordance of angular and spectrally resolved measurements once more.

A statistical analysis of the results for several single particles can be performed with the help of a box plot. In the following, 5 selected single particles for each type of polystyrene beads are analyzed exemplarily. The box plots for these particles are shown in Fig. 5. They show the distribution of the estimated diameters \(D_\lambda \) from angular resolved measurements for each sample. The central marks in the box identify the median value of the diameters \(D_{\text{median}} \), which is less sensitive to outliers. The median diameters \(D_{\text{median}} \) differ slightly from the mean values \(D_{\text{mean}} \). However, Table 1 demonstrates deviations between median and mean of magnitude of 1 nm or less. The boxes themselves are limited by the lower and upper quartiles, i.e., the interquartile range characterizing the middle 50% of the diameter values. Figure 5 shows the boxes for each sample, whereas the interquartile ranges of \(\approx 10 \) nm are rather small, which confirms the quality of the approach. The whiskers indicate diameter values lying outside of the interquartile range not considering outliers that are plotted individually. In addition, the diameter values \(D_{\text{spec}} \) determined from spectrally resolved measurements are marked in Fig. 5 by the asterisks. These diameters \(D_{\text{spec}} \) are located within the boxes in the most cases. A summary of the estimated sizes of the 5 exemplary particles for angular and spectral mode is given in Table 1. As previously mentioned it shows a marginal deviation of 1 nm or less between mean and median diameters. In general, for each single bead measurement the standard deviations in the angular mode are less than 10 nm, the relative standard deviations are less than 0.25%. Therefore, in the angular mode a very high accuracy in the mean diameter estimation is obtained. Furthermore the deviation between the estimated values in angular and spectral mode is less than 0.20% for PS4-2 and less than 0.13% for PS2-8, respectively. The slightly greater deviations for the samples PS4-2 may be caused by the dissimilarities between the theoretical and experimental spectra which are larger for PS4-2 than for PS2-8. The response function of the spectrometer was supposed to be a Gaussian with a FWHM of 3.08 nm for the whole spectral range, though the FWHM might depend on the wavelength, which might have a larger impact on the spectra with more
oscillations. However, the estimated diameter values in the angular and the spectral mode are in agreement within the measurement accuracy. In addition, the determined particle sizes are located in the range of size distributions validated with a collimated transmission setup.25,33 The nominal values (see Sec. 4.1) given by the manufacturer appear to be overestimated.

6 Conclusion

For the evaluation of a novel scattering microscopy setup combining angular and spectral resolution mode, measurements in both modes were compared with each other. Based on elastic light scattering in the backward direction, the diameters of single polystyrene beads were distinguished. The experimental angular and spectral scattering patterns were analyzed by correlating them with the theoretical scattering patterns, which were computed by using Mie theory. In the angular mode, the diameter of a single bead was determined for multiple wavelengths and averaged subsequently. Mean diameters were calculated with a standard deviation of less than 10 nm. The relative standard deviations are 0.25\% or less. By analyzing the spectrally resolved measurements, diameters of exactly the same beads were determined and compared with the diameters achieved by the angular resolved mode. The results of the investigations in angular and spectral resolution modes show an excellent agreement. The deviation between the two methods is only 0.20\% or less. Thus, the combination of the angular and the spectral resolution mode results in a very high accuracy for particle characterization. In the literature other validations of angular resolved and spectroscopic scattering measurements show deviations that are 10 times larger, even though comparable suspensions were utilized.10 The differences may originate from the differences in the setup, i.e., mode and direction of the illumination.

In this study, the investigations in the two resolution modes have figured out that changes in the particle size have stronger influence on spectral patterns than on angular patterns. These changes result in a shift or a modification of the characteristic oscillations in the scatter spectrum. The advantage of the spectral mode can be quantified with the FWHM value of the correlation functions. In contrast, the advantage of the angular resolution mode is the higher sensitivity to changes in the particle shape, structure and orientation, which will be shown in a following contribution. Preliminary experiments with cylindrical samples, e.g., fiber glass, also show a good agreement in size prediction using both methods. Therefore, the presented system with the utilization of the advantages of both angular and spectral resolution mode creates new opportunities in light scattering analysis of not only different spheres34 but also biological samples.11,35,36 Light scattering by cells and the contribution of the intracellular organelles could be simulated using Mie theory models with Gaussian, exponential, or log normal distributions of scatterer sizes.37,38 These models allow the interpretation of differences in angular and spectrally resolved scattering patterns due to the internal structure of cells. Since cells or cell nuclei as well as organelles are rarely exactly spherical, analysis algorithms using Mie theory would be inappropriate. The light scattering patterns of spheroidal15 and ellipsoidal38 scatterers can be calculated using the T-matrix method. Scatterers of arbitrary shape could be simulated using the discrete dipole approximation.39 The focus of future work lies on the investigations of single cells and their temporal changes, e.g., due to the induction of apoptosis in living cells.18 Further steps are the observation of cell spheroids40 and the comparison of these measurements with goniometric measurements.

Acknowledgments

This work is financed by the Baden-Württemberg Stiftung gGmbH and the Deutsche Forschungsgemeinschaft (DFG).
References